HOW تقنية التعلم العميق CAN SAVE YOU TIME, STRESS, AND MONEY.

How تقنية التعلم العميق can Save You Time, Stress, and Money.

How تقنية التعلم العميق can Save You Time, Stress, and Money.

Blog Article



خوارزميات التعلم العميق هي شبكات عصبونية تم تصميمها على غرار الدماغ البشري. على سبيل المثال، يحتوي الدماغ البشري على ملايين الخلايا العصبية المترابطة التي تعمل معًا في تعلّم المعلومات ومعالجتها.

في مجال التعلم العميق، يُمكن قول الشيء نفسه بالنسبة للآلات التي تعمل بأجهزة وبرامج الذكاء الاصطناعي. يتم تحديد المهارات والخبرات التي يمكن للآلات من خلالها التعلُم من البيانات التي تحصل عليها، وتحدد كميّة ونوعيّة البيانات التي يُمكن أن تتعلمها هذه الآلات.

تقوم طبقة الإدخال بمعالجة البيانات وتمريرها إلى طبقات مخفيّة أخرى في الشبكة العصبيّة. تقوم هذه الطبقات المخفيّة بمعالجة المعلومات على مستويات مختلفة، وتكييف سلوكها عندما تتلقى معلومات جديدة. تحتوي شبكات التعلم العميق على مئات الطبقات المخفية التي يمكن استخدامها لتحليل المُشكلة من عدّة زوايا مختلفة.

هذه القدرة على معالجة النص الطبيعي الذي أنشأه الإنسان لها عدة حالات استخدام، من بينها حالات استخدام في الوظائف التالية:

تحتوي شبكات التعلم العميق على مئات من الطبقات المخفية التي يمكنها استخدامها في تحليل مشكلة من عدة زوايا مختلفة.

هذه القدرة على معالجة النص الطبيعي الذي أنشأه الإنسان لها عدة حالات استخدام، من بينها حالات استخدام في الوظائف التالية:

رؤية الحاسوب هي تطبيق واقعي للتعلم العميق. على غرار الذكاء الاصطناعي الذي يمكِّن الحواسيب من التفكير، تمكِّن رؤية الحاسوب الحواسيب من الرؤية والملاحظة والاستجابة. تستخدم السيارات ذاتية القيادة رؤية الحاسوب لـ "قراءة" إشارات المرور. تلتقط كاميرا السيارة صورة التعلم العميق لإشارة المرور.

تتطلب أساليب تعلّم الآلة التقليدية جهدًا بشريًا كبيرًا لتدريب البرمجيات. على سبيل المثال، في التعرف على صور الحيوانات، تحتاج إلى القيام بما يلي:

تجد أساليب تعلّم الآلة صعوبةً في معالجة البيانات غير المهيكلة، مثل المستندات النصية، وذلك لأن مجموعة البيانات الخاصة بالتدريب يمكن أن تحتوي على فروق واختلافات لا حصر لها. ومن ناحية أخرى، تستطيع نماذج التعلم العميق فهم البيانات غير المهيكلة وتقديم ملاحظات عامة بدون استخراج السمات يدويًا.

اختبار هذه الخوارزميات على مجموعة من الصور غير المعروفة.

صفحات للمحررين الذين سجَّلوا خروجهم تعلَّم المزيد مساهمات

وهذا يعني أن كل لوغاريتم للتعلم الآلي يُبنى على أساس دالة رياضية قابلة للتعديل. ويمكن فهم المبدأ الأساسي هكذا:

يؤكد هذا الكتاب على فهم مبادئ ومفاهيم التعلم العميق، مع وجهات نظر حول مناهج التعلم المختلفة. ومع ذلك، هذا لا يعني أنه يمكن وصف جميع جوانب التعلم في مجلد واحد؛ نحن لا ننوي القيام بذلك أيضًا.

تستفيد الأنظمة التي تعتمد على التعلم العميق من القدرة على تحليل البيانات بشكل مفصل، وتعلم الأنماط وتطوير نماذج تعلم آلي دقيقة تتحسن بمرور الوقت.

Report this page